COMMUNICATION

News
“Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity” was published by Science
Published:2018-09-29 Hits:2102

 

“Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4-dimethylamine (DMA)-water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.”

 

The paper entitled “Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity” was published by Science in July 2018. The research works were undertaken by the team of Department of Science & Engineering of Fudan led by Prof. Wang Lin. Prof. Wang is also the researcher of Fudan Tyndall Centre.

 

The full paper is at http://science.sciencemag.org/content/361/6399/278

 

COMMUNICATION
PUBLICATIONS
JOBS
CONTACT US